A Rapid Method for the Determination of Radioactive Diisopropyl Phosphate (DI³²P), Monoisopropyl Phosphate (MI³²P) and Inorganic Phosphate (³²Pi) in Biological Material

B. V. RAMACHANDRAN

Institute of Medical Chemistry, Uppsala University, Uppsala, Sweden

DI²²P is completely recoverable from acidified trichloroacetic acid filtrates by two extractions with a (1:1) mixture of isobutanol and benzene. MI³²P is extractable to the extent of about 50 %. On addition of molybdate and further extraction with the solvent mixture only the ³²P_i is extracted quantitatively, the MI³²P remaining in the aqueous phase under the conditions employed. By applying appropriate corrections the true values for DI³²P, MI³²P, and ³²P_i can be calculated. The method has the advantage of being simple, rapid and capable of being used for the routine analysis of a large number of samples in combination with the available methods for the determination of DF³²P and ³²P_i.

The biological degradation of diisopropyl phosphorofluoridate (DFP) has been extensively studied, ¹⁻⁴ but interest has mainly centred on the hydrolysis of the acid anhydride (P—F) bond which is concerned with the toxic and enzyme-inhibitory effects. Very little is known about the further degradation of diisopropyl phosphate (DIP) to monoisopropyl phosphate (MIP) and inorganic phosphate (P_i). The study of the secondary hydrolysis of DFP in the animal system is of importance, since it is known that acetylcholinesterase which has been inactivated by DFP changes quickly from the oxime-reactivable to the non-reactivable form, a process known as 'aging', ^{5,6} and this conversion is accompanied by the loss of one of the isopropyl groups from the phosphorylated enzyme. ⁷ The biochemical mechanism by which this is brought about is not understood. To investigate this and similar problems it is necessary to have a convenient and rapid method for the estimation of DIP, MIP and P_i in animal tissues. The available methods based on ion-exchange and paper chromatography ^{7,8} are time-consuming and not suited for application when large numbers of samples have to be analysed. The present communication

describes a method for the determination of DI³²P, MI³²P, and ³²P_i when DF³²P is the starting material. It is similar to the solvent extraction procedure used by Harris *et al.*⁹,¹⁰ for the determination of the metabolites of Soman.

MATERIALS AND METHODS

DF³²P (300 mC/g) was obtained from Radiochemical Centre, Amersham, England. Stock solutions were prepared in propylene glycol to contain 1.85 mg (10 μ moles)/g and preserved at -16° and quantities were weighed out before experiments. ³²P_i was also obtained from the same source.

Preparation of DI³²P. DF³²P is very rapidly hydrolysed to DI³²P by dilute alkali at room temperature. The isopropyl groups are resistant to alkaline hydrolysis but are

slowly hydrolysed by boiling with 1 N H₂SO₄.

About 1 g of the stock solution of DF³²P was dissolved in 10 ml of 0.2 N NaOH and left at room temperature for 1 h. It was diluted to about 25 ml, acidified with 3 ml of 10 N H₂SO₄ and extracted twice with 30 ml portions of a (1:1) mixture of isobutanol and benzene (BB). The solvent layer was extracted thrice respectively with 10, 5, and 5 ml of 0.1 N NaOH in which the DI³²P was completely recovered. This DI³²P was found to be completely free from MI³²P and ³²P_i as determined by paper chromatography ⁸ followed by autoradiography and ion-exchange column chromatography on Dowex-1 (Ref. 8). In case it was found to be impure a repetition of the cycle by acidification and re-extraction with BB gave a pure product. The solution was adjusted to pH 9 at which it was stable. Aliquots were suitably diluted in the following experiments.

Preparation of MI³²P. When DI³²P was boiled under reflux with 1 N H₂SO₄ and aliquots were withdrawn at intervals and diluted with 1 N H₂SO₄ and extracted with BB, the extractable radioactivity was found to decrease progressively with a corresponding increase of ³²P₁ and the un-extractable radioactivity (Table 1, second and third columns, respectively). Since at 6 h the amount of activity in the acidic aqueous phase (corresponding to MI³²P) seemed to decrease, a sample of DI³²P was hydrolysed for this period and repeatedly extracted with an equal volume of BB each time. Extracts 1 and 2, extract 3 and extracts 4—10 were pooled and the radioactivity recovered by re-extraction with 0.1 N NaOH. The pooled extracts 1 and 2 consisted of a mixture of DI³²P

Radioactivity as per cent of the total in Solvent ext. Acidic aqueous Time Solvent ext. (h) of hydrolysate after addition phase of molybdate 0 95.7 3.0 1.3 2 3.9 78.9 17.2 4 10.0 26.3 63.750.8 6 19.2 30.0 8 41.5 26.432.1 12 27.8 25.446.8 60.6

Table 1. Acid hydrolysis of DI³²P.

14 ml of a solution of DI²P (containing approximately 80 000 cpm/ml of radioactivity) was diluted to 140 ml after the addition of 14 ml of 10 N H₂SO₄ and boiled under reflux. 6 ml aliquots were withdrawn at intervals and extracted once with 6 ml of a (1:1) mixture of isobutanol-benzene. Of the aqueous phase, 3 ml were mixed with 0.5 ml of a 10 % solution of ammonium molybdate and extracted with 3 ml of the solvent mixture. Radioactivity was determined in the solvent layers and the acidic aqueous phase as described under Methods.

and $MI^{32}P$ as determined by paper chromatography and autoradiography. Extract 3 showed predominantly $MI^{32}P$ with a faint spot of $DI^{32}P$. The pooled extracts 4-10 consisted only of $MI^{32}P$.

If the logarithm of the radioactivity in each extract was plotted against the number of extractions a straight line graph was obtained after the third extract, the slope of which was 0.7. This showed that about 30 % of the MI³²P in the aqueous phase was extracted each time.

The pH of the MI³²P solution was adjusted to 9 by the addition of dilute H₂SO₄ and aliquots were suitably diluted for further experiments.

Radioactivity measurements. These were done by pipetting out 0.5 ml aliquots in glass cups in triplicate, drying them in an air-oven at 80—110° and counting in a Rotatory Automatic Fraction Changer (LKB-Produkter AB, Stockholm) fitted with an end-window GM tube. Solvents and aqueous solutions which did not already contain H₂SO₄ were evaporated in the presence of 2 drops of 1 N H₂SO₄ as otherwise low values were obtained especially for DI³²P.

RESULTS AND DISCUSSION

Extractability of DI³²P and MI³²P from various media. Table 2 gives the results. It is seen that from acidic solutions of pH 1.0 and below DI³²P was extractable to the extent of more than 90 %, which would give an almost complete recovery in 2 extractions. The extractability decreased progressively

No.	Medium			Percent radioactivity extracted (with S.D. and No. of trials)				
			ĎI82P	MI ³² P				
1. 1.0 1	N H ₂ SO ₄		93.1 + 0.9 (46)	29.8 ± 2.9 (4)				
2. 0.5	»		$91.8 \pm 0.4 (18)$	29.2 (2)				
3. 0.1	»		$90.3 \pm 0.5 (21)$	22.5 (2)				
	% TCA		$93.2 \pm 0.6 (18)$	$20.3 \pm 0.9 (8)$				
5. 10	% »		90.8 + 0.2 (9)	$20.1 \pm 0.4 (8)$				
6. 5	% »		87.5 + 1.7 (9)	19.5 + 0.4 (8)				
7. 2.5			$85.3 \pm 0.7 (9)$	$18.7 \pm 0.3 \ (8)$				
8. KCl-	HCl buffer, (0.05 M, pH 1.0	$92.3 \pm 0.4 (9)$	29.0				
	» »	» 2.0	$58.5 \pm 2.0 (9)$	5.6				
0. Glvc	ine-HCl buffer	» 3.0	$17.3 \pm 1.7 (9)$	0.8				
	ate buffer	» 4.0	4.2 + 0.2 (9)	0.3				
	» »	» 5.0	0.6 + 0.1 (9)	0.0				
13. 1.0 N N_2SO_4 + molybdate			$92.2 \pm 0.2 (4)$	$23.4 \pm 2.3 \ (4)$				
4. 0.5	»	»	$89.7 \pm 0.5 (6)$	$3.4 \pm 1.4 \ (3)$				
15. 0.1	»	»	$83.4 \pm 0.6 (6)$	$0.0 \pm 1.1 (3)$				

Table 2. Extractability of DI³²P and MI³²P from various media.

10 ml of DI³²P solution in the appropriate medium and containing 4000–8000 counts/min/ml of radioactivity was extracted once with 10 ml of a (1:1) mixture of isobutanol and benzene. 0.5 ml aliquots of the solvent and the aqueous phase were plated with 2 drops of 1 N H₂SO₄ for radioactivity determinations. The results are expressed as percentage of radioactivity in the solvent layer in terms of the total in the two phases. In the case of MI³²P, the experiments with TCA were carried out as above. With others 10 ml of MI³²P solution containing 10⁵-10⁶ counts/min/ml in the appropriate medium were extracted 10 times with 10 ml portions of the solvent and the logarithm of the radioactivity extracted each time was plotted against the number of extractions. From the slope of the straight line part of the graph the extractability was calculated.

as the acidity was decreased. It was unextractable from media of pH 5 and above. MI³²P was extractable to a much less extent than DI³²P. It was extractable from media containing 0.5 to 1.0 N H₂SO₄ about 29 % each time. This showed that almost exactly 50 % of the total MI32P would be extracted in two extractions. Not included in the table are figures for the extractability of DI³²P and MI³²P from solutions which contained both H₂SO₄ and 10 to 20 % trichloroacetic acid (TCA). The values were found to be almost the same as with H₂SO₄

Separation of MI32P and 32P. In the presence of ammonium molybdate MI³²P was extractable to the extent of 23.4 % from solutions which contained 1.0 N H₂SO₄ (item 13, Table 2). The extractability steeply decreased (2 to 5% as the acidity was lowered to 0.5 N and it was completely un-extractable at 0.1 N (items 14 and 15, Table 2). By trial experiments it was found that ³²P, was only partially (87 %) extracted as the phosphomolybdate from acid of 0.1 normality but that it was quantitatively extracted (99-101 %) from 0.5 N H₂SO₄. Thus, by adding ammonium molybdate and extracting with BB from media containing 0.5 N H₂SO₄ it will be possible to effect an almost complete separation of MI³²P and ³²P,

Suggested procedure for a mixture of DI32P, MI32P and 32P. Trial experiments were carried out with 1:10 aqueous homogenates of mouse liver, kidney, lungs, and brain to which known amounts of DI³²P, MI³²P and ³²P, were added either individually or as a mixture. TCA (100 % w/v) was added immediately to a final concentration of 16 % and the mixture was filtered. Radioactivity determinations in the TCA-filtrates showed that recoveries were quantitative. There was no degradation of DI³²P or MI³²P on standing at room temperature

with TCA in concentrations up to 20 % for 48 h.

For the estimation of DI³²P, MI³²P, and ³²P_i, a known volume of the TCAfiltrate (9.5 ml) was acidified with 10 N H₂SO₄ (0.5 ml) to a final acid concentration of 0.5 N and extracted twice with an equal volume each time of BB. Radioactivity was determined in 0.5 ml aliquots of the solvent extract (S). An aliquot (5 ml) of the aqueous phase was treated with 0.5 ml of a 10 % solution of ammonium molybdate in water and extracted once with 5 ml of BB. The radioactivity in the solvent phase (MS) and the aqueous phase (MW) was determined. The activity in MW represented 50 % of the total MI³²P (29.2 % + 20.8 % in the two extractions respectively to obtain S) if the small amount of MI³²P carried over with the ³²P_i (MS fraction) was ignored. The true value for MI³²P originally present was thus taken as equal to twice the amount of radioactivity in the MW fraction. The activity in fraction MS was taken to represent that of ³²P. The true value of DI³²P was equal to the activity in S minus that in MW.

Table 3 gives the results of some experiments. Larger volumes of TCAfiltrates (50-100 ml) which contained lower radioactivity such as those obtained from brain tissue have been worked up as above. In these cases the activity in the solvent phases were concentrated by rendering them alkaline with 4 N NaOH in which all the activity was extractable. These as well as the MW fractions were then further concentrated, if necessary, by evaporation

before plating.

Table	З.	Recovery	of	DI³³P,	MI ³² P,	and	$^{32}P_i$	added	to	mouse	liver	homogenates.
-------	----	----------	----	--------	---------------------	-----	------------	-------	----	-------	-------	--------------

		nts/min			
Expt. No.	Fraction S		Fraction MW		$MI^{32}P$ $(MW \times 2)$
1	74 280	83 700 111 %	19 932	54 348 101 %	39 864 108 %
2	69 280	80 000 106 %	19 206	50 074 93 %	38 412 104 %
3	68 120	79 4 00	19 426	48 694	$38\ 852$
4	69 320	105 % 71 880	18 458	90 % 50 862	105 % 36 916
5	69 720	102 % 76 620	17 270	94 % 52 450	100 % 34 540
6	70 040	102 % 76 560 101 %	18 502	97 % 51 538 95 %	93 % 37 004 100 %

To 10 ml of a mixture which contained 2 ml each of DI32P, MI32P, 32Pi and 100 % (w/v) TCA, 1 ml of 10 N H₂SO₄ and 1 ml water, 10 ml of a (1:10) mouse liver homogenate in water was added. The mixture was filtered and 10 ml aliquots were analysed as described. (S = solvent extract, MS = solvent extract on addition of molybdate and further extraction, MW = the acidic aqueous phase after extraction of $^{32}P_i$ as phosphomolybdate. The values are expressed as CPM in 10 ml of the TCA filtrate which contained DI $^{32}P_i$ (54 000), MI³²P (36 980) and ³²P_i (75 360) counts/min. The percent recoveries refer to these figures.

For the determination of DI³²P and MI³²P in DF³²P-inhibited enzyme material, the phosphoprotein was obtained by any one 11 of the well-known methods. The precipitate was then treated with 1 N NaOH to release the organophosphate moieties and the solution treated with TCA. The filtrate was then acidified and analysed as described above.

The suggested procedure is only approximate but it has the advantage of being simple, rapid and capable of being combined with the well-known Martin and Doty procedure for the determination of ³²P_i (Refs. 12, 13). The foregoing results also indicate the possible sources of error in the determination of ³²P, by the above method where DF³²P has been used such as in enzymeinhibition studies.

Acknowledgements. The author is thankful to Miss Annsofi Holst and Miss Gunnel Lagander for excellent technical assistance. The work was supported by grants from the Swedish Medical Research Council (Project Nos. 40P-666 and 40X-665).

REFERENCES

- 1. Mazur, A. J. Biol. Chem. 164 (1946) 271.
- 2, Mounter, L. A. In Handbuch der experimentellen Pharmakologie, Ergänzungswerk XV, p. 486. Springer, Berlin 1963.
 3. Cohen, J. A. and Warringa, M. G. P. J. Biochim. Biophys. Acta 26 (1957) 29.
 4. Ramachandran, B. V. and Ågren, G. Biochem. Pharmacol. 13 (1964) 849.
 5. Hobbiger. F. Brit. J. Pharmacol. 10 (1955) 356.

Acta Chem. Scand. 21 (1967) No. 3

 Davies, D. R. and Green, A. L. Biochem. J. 63 (1956) 529.
 Berends, F., Posthumus, C. H., Sluys, I. v. D. and Deierkauf, F. A. Biochim. Bio-Plapp, F. W. and Casida, J. E. Anal. Chem. 30 (1958) 1622.
 Harris, L. W., Braswell, L. M., Fleisher, J. P. and Cliff, W. J. Biochem. Pharmacol.

13 (1964) 1129.

 Fleisher, J. H. and Harris, L. W. Biochem. Pharmacol. 14 (1965) 641.
 Kleinsmith, L. J., Allfrey, V. G. and Mirsky, A. E. Proc. Natl. Acad. Sci. U.S. 55 (1966) 1182. 12. Martin, J. M. and Doty, D. M. Anal. Chem. 21 (1949) 965.

13. Ernster, E., Zetterström, R. and Lindberg, O. Acta Chem. Scand. 4 (1950) 942.

Received December 1, 1966.